8750

Flow Controller, flow control system for gases

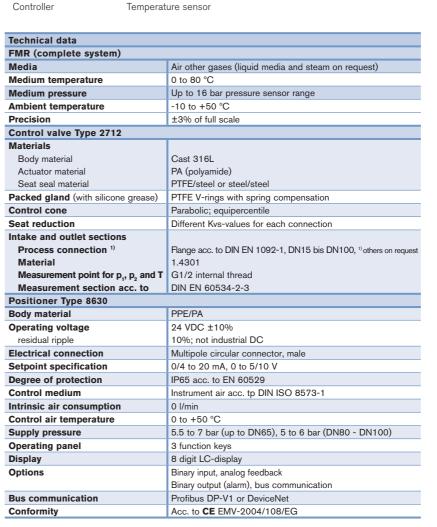
- Highly cost effective solution, thanks to the integrated system
- Reliable, robust system
- Automatic process tune
- Simple to operate
- Stand-alone operation possible

Type 2655

Type 8644

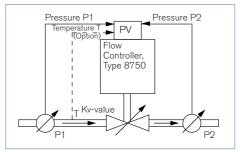
The pressure drop over the control valve (acting as a restriction) is measured continuously by the two pressure sensors. This pressure difference and the valve flow characteristic are the parameters for determination of the volumetric flow through the control valve, i.e. for the process value. This measured volumetric flow is compared with the setpoint, evaluated in a PID controller and set on the positioner as the new setpoint. The real flow characteristic curve for the current control valve is stored point-for-point in 5 % steps in the memory of the TopControl.

Applications

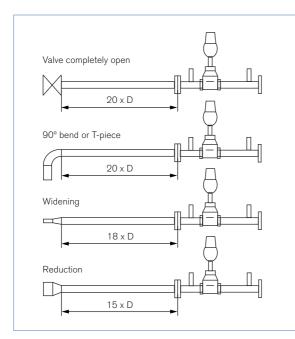

- Air flow control system for the pneumatic conveying of granular materials (grain, powder, etc.)
- Control system for propellents (gas or air) in pigging systems
- Control of combustion gases and air in industrial furnaces.

Type 8400

Type 1150 Controller


Technical data

Pressure transmitter Type 8323							
Measurement range	From 0 - 100 mbar to 0 - 16 bar (other pressure ranges on request)						
Measurement principle	Piezoresistive						
Measurement method	Relative pressure measurement						
Measurement error	≤ 0.5% of full scale						
Overload limits	At least 5 x full scale						
Bursting pressure	At least 5 x full scale						
Output signal (2-conductor system)	Standard signal 4 to 20 mA						
Body material	Stainless steel 1.4301						
Wetted parts	Stainless steel 1.4571						
Temperature transmitter Type							
Measurement range	- 40 to +125 °C						
Connection	G 1/2						



Action diagram of the FMR

burkert

Intake section according to EN ISO 5167-1

Note

On assembly, be sure to connect an intake section according to EN ISO 5167-1 upstream. The required outlet sections are already integrated into the FMR (6 x DN)

Flow capacity (Kvs)¹⁾ and range of air flow rate²⁾ - examples

Port size	Seat Kvs DN			v rate at p2=3 bar(g)		v rate at p2=1 bar(g)	Air flow rate at p1=0.125 and p2=0.060 bar(g)		
	[mm]	[m³/h]	Q _{max} [Nm³/h]	Q _{min} [Nm³/h]	Q _{max} [Nm³/h]	Q _{min} [Nm³/h]	Q _{max} [Nm³/h]	Q _{min} [Nm³/h]	
	8	2.1	150	10	90	10	10	0.4	
DN15	10	3.1	250	10	150	15	18	0.5	
	15	4.3	375	15	220	15	25	0.8	
	15	5.3	400	15	250	15	30	0.8	
DN25	20	7.2	550	25	320	15	40	1.3	
25		12.0	900	35	550	20	70	2	
25		13.6	1100	40	650	25	80	2.5	
DN40	32	20.2	1500	50	900	30	110	3	
-	40	23.8	1800	70	1100	40	130	4	
	32	21.0	1600	60	950	35	120	4	
DN50	40	24.6	1900	70	1100	40	140	4	
	50	37.0	2900	100	1700	60	210	6	
	40	17.5	1200	60	700	30	80	3	
DN65	50	26.0	2000	100	1200	50	140	6	
	65	52.0	4500	130	2700	80	320	10	
	50	42.0	2500	100	1500	50	200	6	
DN80	65	70.0	5000	150	3000	90	350	10	
	80	100.0	8500	250	5000	140	600	18	
	65	75.0	5500	150	3000	90	380	10	
DN100	80	115.0	9000	250	5500	150	650	18	
	100	140.0	12000	350	7000	210	850	25	

¹⁾Kvs represents the maximum flow capacity of a control valve series. The Kv value [m³/h] is measured to DIN EN 60534-2-3 with water (5 - 40 °C) and a pressure drop of 1 bar over the valve.

²⁾The air flow rates mentioned above are given as a reference. The values refer to air with a temperature of 20 °C. The condition for the min. and max. limits is determined at 10 and 90% positions and turbulent air flow.

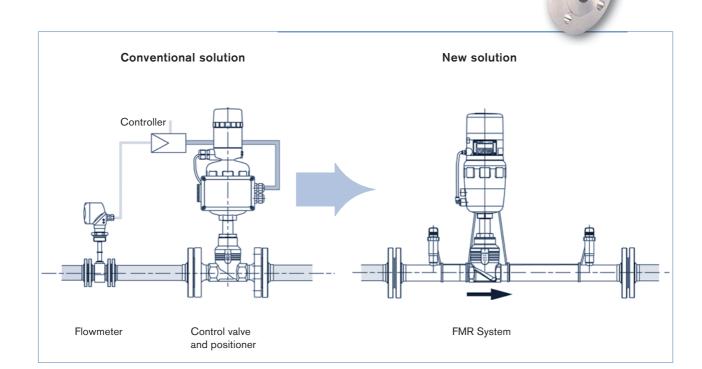
Note

Please ask for advice in sizing the flow controller FMR. Contact your local sales centre

DTS 1000089368 EN Version: F validé) printed: 17.10.2013 Status: RL (released | freigegeben |

Specification code for Flow Controller Type 8750

•																		
Specifi	catio	ns			•								7 6					
key			_	875	$0 - \mathbf{x}$	(XX –)	XXXX	- XX/	XX -	XX -	X -	- X		X – (XX -	X	- X	
											-	_						
e size (mn	n] (conned	ction	DNA)														Softw	are feedba
0																	0 n	one
.0																		nalog feedba
.0																	+	2 binary out
.0	_																Comp	unication
.0	_																S	serial interf
.0	_																Y	Profibus-D
0.0																	D	Device Net
		0.	ifico [mm]		_													
rt connectior	n Std	1	rifice [mm] Reduction 2		ction											Max.	medium p	ressure (P
	15.0	10.0		2110 1.0000												AA	0 - 0.10	D bar (g
1 25	25.0	20.0		15.0												AB	0 - 0.16	0 bar (g
140	40.0	32.0		25.0												AC	0 - 0.25	0 bar (g
1 50	50.0	40.0	. 3	32.0												AD	0 - 1	bar (g
165	65.0	50.0	4	40.0												AE	0 - 2.5	bar (g
180	80.0	65.0	5	50.0												AF	0 -6	bar (g
V 100	100.0			65.0												AG	0 - 10	bar (g
N 100	100.0			65.0												AH	0 - 16	bar (g
N 100	100.0			65.0												AH AJ	0 - 16	bar (g bar (g
N 100	100.0			65.0												AH AJ V1	0 - 16 0 - 25 ¹⁾ 0 - 1	bar (g
N 100	100.0			65.0												AH AJ	0 - 16 0 - 25 ¹⁾ 0 - 1	bar (g bar (g
				65.0											Sance	AH AJ V1	0 - 16 0 - 25 ¹⁾ 0 - 1 equest	bar (g bar (g bar (a
ine connect			e e				We	ld end								AH AJ V1 ¹⁾ on re	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce	bar (g bar (g bar (a
ine connect	iion	80.0	F	lange		82238									Ρ	AH AJ V1 ¹⁾ on re	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a	bar (g bar (g bar (a ss values ind after
ine connect ort onnection	tion EN-1092	80.0	F ANSI ASME	ilange E B16.5	JIS 10K,		ISO	DIN	52							AH AJ V1 ¹⁾ on re br type press	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce	bar (g bar (g bar (a ss values ind after
ine connect ort onnection nm]	iion	80.0	F	ilange E B16.5		B2238 2002 S20									Ρ	AH AJ V1 ¹⁾ on re br type press	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a	bar (g bar (g bar (a ss values ind after
ine connect ort onnection nm] N 15	EN-1092	80.0	F ANSI ASME Ft-f ISA S75	ilange E B16.5	f-t-f JIS B		ISO 4200	DIN 11850 \$							Ρ	AH AJ V1 ¹⁾ on re br type press	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a	bar (g bar (g bar (a ss values ind after
ne connect ort onnection Im] N 15 N 25	tion EN-1092 f+t-f DIN3 FD22	80.0	F ANSI ASME f-t-f ISA S78 FA02 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾		ISO 4200 SA42 ¹⁾	DIN 11850 \$ SD42 1)							P T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a	bar (g bar (g bar (a ss values ind after
ine connect ort onnection nm] N 15 N 25 N 40	EN-1092 Ft-f DIN3 FD22 FD24	80.0	FANSI ASME ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾	DIN 11850 \$ SD42 1) SD44 1)							P T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a	bar (g bar (g bar (a ss values ind after
ne connect ort onnection nm] N 15 N 25 N 40 N 50	EN-1092 f+f DIN3 FD22 FD24 FD26	80.0	FANSI ASME Ft-f ISA S78 FA02 ⁽¹⁾ FA04 ⁽¹⁾ FA06 ⁽¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾						Port c	P T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a emperature	bar (g bar (g bar (a ss values ind after
ine connect ort onnection nm] N 15 N 25 N 40 N 50 N 50 N 65	EN-1092 f-t-f DIN3 FD22 FD24 FD26 FD27	80.0	FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA07 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾						Port c DN 15	P T tor size	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a	bar (g bar (g bar (a ss values ind after
ne connect ort onnection um] N 15 N 25 N 40 N 50 N 50 N 65 N 80	EN-1092 Ft-f DIN3 FD22 FD24 FD26 FD27 FD28	80.0	ANSI ASME Ft-f ISA S73 FA02 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾	ilange E B16.5	F-L-F JIS B FJ01 1) FJ03 1) FJ05 1) FJ05 1) FJ07 1)		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA46 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD46 ¹⁾ SD47 ¹⁾						Port c	P T tor size	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a emperature	bar (g bar (g bar (a ss values ind after
ine connect ort onnection nm] N 15 N 25 N 40 N 50 N 50 N 65 N 80 N 100	EN-1092 ft-f DIN3 FD22 FD24 FD26 FD27 FD28 FD29	80.0	F F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA09 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20	P T tor size	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ¹⁾ 0 - 1 equest s - proce ure before a ure before a emperature F F	bar (g bar (g bar (a ss values ind after
ine connect ort onnection nm] N 15 N 25 N 40 N 50 N 50 N 65 N 80 N 100	EN-1092 ft-f DIN3 FD22 FD24 FD26 FD27 FD28 FD29	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 25	P T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 equest s - proce ure before a ure before a ure before a F F F F F F F F	bar (g bar (g bar (a ss values ind after
ne connecto prit prinection imi] N 15 N 25 N 25 N 40 N 50 N 65 N 80 N 100	EN-1092 ft-f DIN3 FD22 FD24 FD26 FD27 FD28 FD29	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 25 DN 32	P T T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 0 - 1 state st	bar (g bar (g bar (a ss values ind after
ne connect ont onnection Im] N 15 N 25 N 40 N 50 N 50 N 65 N 80 N 100 auf Anfrage	EIN-1092 Ft-f DIN3 FD22 FD24 FD26 FD27 FD28 FD29 FD30	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 25 DN 32 DN 32	P T T connection conne	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 equest s - proce ure before a ure before a ure before a F F F G G G G	bar (g bar (g bar (a ss values ind after
ine connection onnection nm] IN 15 IN 25 IN 40 IN 50 IN 65 IN 80 IN 100 Pauf Anfrage	EN-1092 ft-f DIN3 FD22 FD24 FD26 FD27 FD28 FD29 FD30	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 25 DN 32 DN 32 DN 40 DN 50	P T T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 0 - 1 equest s - proce ure before a ure before a ure before a F F F G G H	bar (g bar (g bar (a ss values ind after
ine connection onnection nm] N 15 N 25 N 40 N 50 N 65 N 80 N 100 Pauf Anfrage eal materia S steel/s	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 25 DN 32 DN 40 DN 50 DN 65	P T T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 equest s - proce ure before a ure before a ure before a F F F G G H	bar (g bar (g bar (a ss values ind after
N 100 ine connection rort onnection nm] NN 15 NN 40 NN 45 NN 65 NN 80 NN 100 'auf Anfrage E PTFE/st	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 20 DN 32 DN 40 DN 50 DN 65 DN 80	P T T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 ocuest s - proce ure before a ure before a ure before a F F F F G G H H L	bar (g bar (g bar (a ss values ind after
ne connection onnection Im] N 15 N 25 N 40 N 50 N 65 N 80 N 100 auf Anfrage eal materia S steel/s E PTFE/s	Liver 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	80.0	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 20 DN 32 DN 40 DN 50 DN 65 DN 80	P T T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 ocuest s - proce ure before a ure before a ure before a F F F F G G H H L	bar (g bar (g bar (a ss values ind after
ine connection ont onnection nm] N 15 N 25 N 40 N 50 N 50 N 65 N 80 N 100 Pauf Anfrage eal materia S steel/s E PTFE/s	Liver 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2202	F ANSI ASME Ft-f ISA S78 FA02 ¹⁾ FA04 ¹⁾ FA06 ¹⁾ FA06 ¹⁾ FA08 ¹⁾ FA08 ¹⁾ FA08 ¹⁾	ilange E B16.5	f-t-f JIS B FJ01 ¹⁾ FJ03 ¹⁾ FJ05 ¹⁾ FJ06 ¹⁾ FJ07 ¹⁾ FJ08 ¹⁾		ISO 4200 SA42 ¹⁾ SA44 ¹⁾ SA46 ¹⁾ SA47 ¹⁾ SA48 ¹⁾ SA48 ¹⁾	DIN 11850 S SD42 ¹⁾ SD44 ¹⁾ SD46 ¹⁾ SD47 ¹⁾ SD48 ¹⁾ SD49 ¹⁾						Port c DN 15 DN 20 DN 20 DN 32 DN 40 DN 50 DN 65 DN 80	P T T	AH AJ V1 ¹⁾ on re press press plus t	0 - 16 0 - 25 ** 0 - 1 ocuest s - proce ure before a ure before a ure before a F F F F G G H H L	bar (g bar (g bar (a ss values ind after


p. 4/9

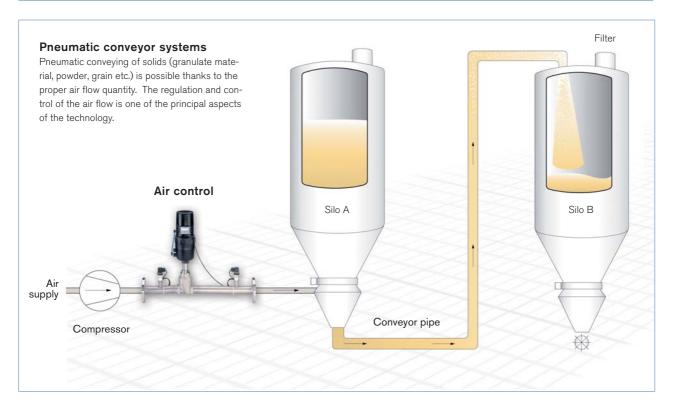
Target segments

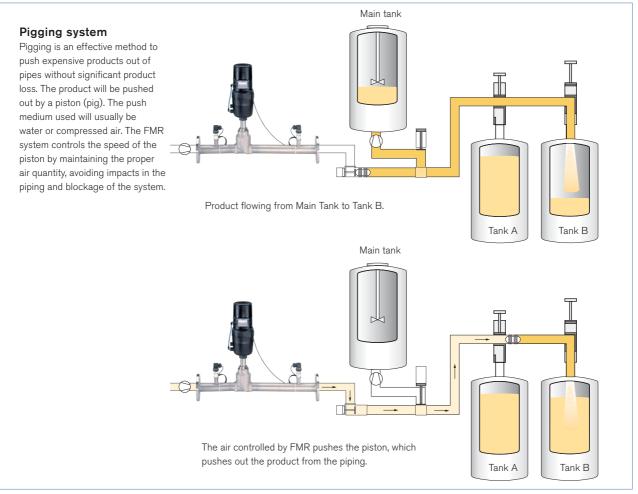
Application areas

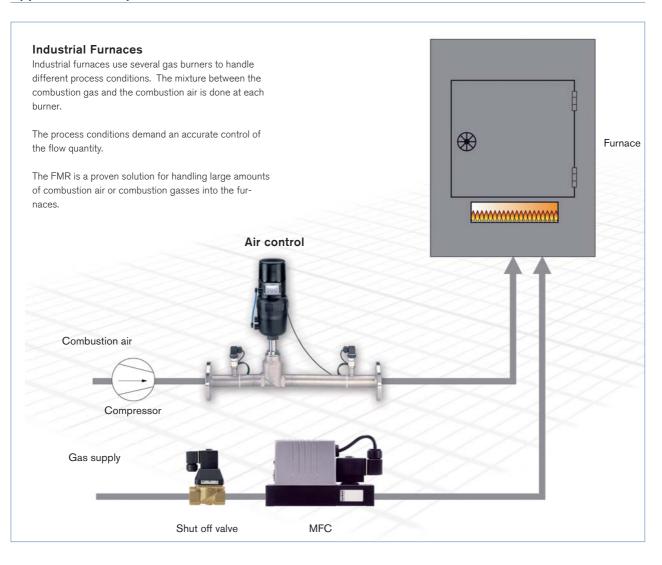
- Provides a proven solution for pneumatic conveyor systems of granulate material in the chemical, food, plastic and pharmaceutical industries.
- Provides an effective solution for piston speed control in pigging systems in the chemical, paint, pharmaceutical, cosmetic, food and brewerage industries.
- Provides a cost-effective solution for gas/air flow control systems in water purification, power and waste incineration plants, ceramic industries, metal refineries and industrial furnaces.

Advantages

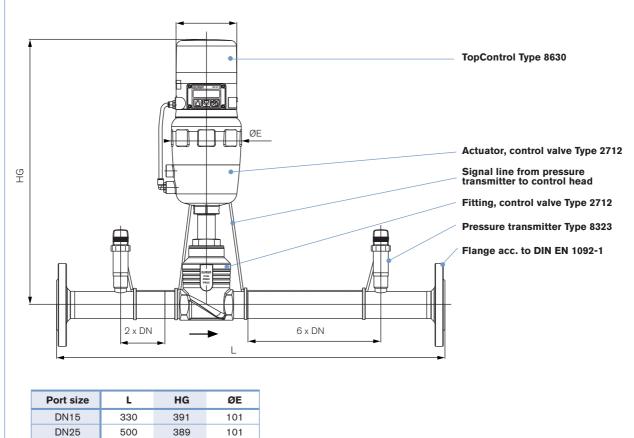
- All in one compact system
- · Stand-alone operation, no remote device is required


burkert


Reliable and robust system



Application examples


Application examples

burkert

Dimensions [mm]

DN15	330	391	101
	000		101
DN25	500	389	101
DN40	700	481	127
DN50	800	518	157
DN65	1000	547	157
DN80	1200	623	261
DN100	1400	633	261

(The version shown was assembled without a temperature transmitter) An FMR is delivered ready assembled with pressure transmitter lines wired.

Note

Observer the flow direction on assembly

burkert

lote

Specification sheet for Type 875	50						Not You the f
Please fill out and send to your local	Bürkert	Sales Cer	ntre* with your i	nquiry or o	rder		in th befo
Company			Contact person				out
Customer no.			Department				
Address			Tel./Fax				
Postcode/Town			E-Mail				
= mandatory fields to fill out			uantity		Reg	uired delivery	date
Operating data						,	
Site of control							
Measuring and control task							
Pipeline DI	N [PN 🗌		7		
Pipe material							
Process medium							
Type of media	Gas	5	S	team ¹⁾		Liquid 1)	
Standard density			Kg/Nm³				
Min	St	andard	Max	Un	it		
Flow rate (Q, QN, W) ²⁾							
Temperature at valve inlet T1							
Absolute pressure at valve inlet P1							
Absolute pressure at valve outlet P2							
∞ standard unit Liquid Q = m³/h; Steam W = Kg/h; Gas QN = Nm³/h Valve features							
Standard connection (flange)	DIN		NSI 🗌 JIS	other	Versions		
Seat sealing material	Met	al 🗌 P [.]	TFE				
Function	NC	3) 🗌 N	O ³⁾				
Max. sound level accepted		dl	B (A)				
Pilot pressure			min.			n	nax.
 NC: resting position with spring closed; SFB: resting position 	tion with sprir	ng open					
Controller features		Pressure i	measurement	Т	emperat	ure measuren	nent
Communication		Measurin	ig range				
Analogue signals for setpoint/output		_			necess	ary range:	٥
Input 0/4 - 20 mA / 0 - 5/10V + 1 Bina	rv input		0 mbar		or		
			60 mbar 60 mbar				
Output 0/4 - 20 mA / 0 - 5/10V + 2 Bina	ry output	0 - 1				cessary, because t	
		0 - 2.5	ō bar			temperature is app nt (see Note)	э.
<u>or</u>		0 - 6			CONSIG		
					Note:		
		0 - 16 0 - 25				temperature can	be set
Fieldbus			bar (absolute)		the FMR's The tempe	display. erature compensat	ion will
Profibus DP-V1			·····		calculated	based on this pre	
Device Net		other	range		value.		

*To find your nearest Bürkert facility, click on the orange box \rightarrow www.burkert.com

In case of special application conditions, please consult for advice. Subject to alterations © Christian Bürkert GmbH & Co. KG 1310/5_EU-en_00891925